DIAPHRAGM LIQUID PUMP

NF 600, NF 1.600

Operating and Installation Instructions

Read and observe these operating and installation instructions!

An additional letter prefixing the NF model code is a country-specific designation and has no technical relevance.

Contents

1. About this document ... 2
2. Use ... 3
3. Safety ... 4
4. Technical data .. 6
5. Assembly and function ... 8
6. Installation and connection ... 9
7. Operation .. 14
8. Servicing ... 16
9. Troubleshooting .. 21
10. Spare parts and accessories .. 23
11. Decontamination declaration .. 24
1. About this document

1.1. Use of the operating and installation instructions

The operating and installation instructions are part of the pump.

- Pass on the operating and installation instructions to the next owner.

Project pumps

Customer-specific project pumps (pump models which begin with "PL" or "PML") may differ from the operating and installation instructions.

- In the case of project pumps, take note of any additionally agreed specifications.

1.2. Symbols and markings

Warning

This symbol indicates a potential danger.

It also indicates the possible consequences of failure to observe the warning. The signal word (i.e. "Warning") indicates the level of danger.

- This specifies measures for avoiding the danger and the consequences of failure to implement these measures.

Danger levels

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
<th>Consequences if not observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>warns of immediate danger</td>
<td>Death or serious injuries and/or serious material damage are the consequence.</td>
</tr>
<tr>
<td>WARNING</td>
<td>warns of possible danger</td>
<td>Death or serious injuries and/or serious material damage are possible.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>warns of a potentially dangerous situation</td>
<td>Minor injuries or material damage are possible.</td>
</tr>
</tbody>
</table>

Tab. 1

Other information and symbols

- This indicates an activity (step) that needs to be carried out.

1. This indicates the first step of an activity to be carried out. Any additional steps required are consecutively numbered.

- This symbol refers to important information.
2. **Use**

2.1. **Proper use**

The pumps are intended for transferring and metering liquids and gases.

Owner's responsibility

Only install and operate the pumps under the operating parameters and conditions described in Chapter 4, Technical data.

The pumps may be operated only when fully assembled.

Before transferring or metering a medium, check that the medium can be transferred without risk in the specific application case.

Before using a medium, check the compatibility of the materials of the pump head, pump housing, diaphragm and valves with the medium.

The temperature of the medium must lie within the permissible temperature range (see Chapter 4).

The media should not contain particles as these can prevent the pump from working correctly. If this cannot be guaranteed, a filter $< 100 \, \mu m$ with a sufficiently large filter area must be used upstream of the pump.

2.2. **Improper use**

The pumps may not be operated in an explosive atmosphere.

For special modifications outside the standard technical specifications, please contact a KNF pump specialist.
3. **Safety**

Note the safety precautions in Chapters 6. Installation and connection, and 7. Operation.

The pumps are built according to the generally recognized rules of technology and in accordance with the pertinent occupational safety and accident prevention regulations. Nevertheless, dangers can result during their use which lead to injuries to the user or others, or to damage to the pump or other property.

Only use the pumps in perfect working order and in accordance with their intended use. Always ensure adherence to the operating and installation instructions and work in a safety-conscious manner.

Personnel Make sure that only trained and instructed personnel or specially trained personnel work on the pumps. This especially applies to assembly, connection and servicing work.

Make sure that all personnel have read and understood the operating and installation instructions, and in particular the "Safety" chapter.

Working in a safety-conscious manner Always ensure adherence to all pertinent accident prevention and safety regulations when working on and operating the pump.

Handling dangerous media Always observe the safety regulations when handling dangerous media.

Notes Always ensure adherence to all information stickers on the pumps, such as flow direction arrows and type plates, and keep stickers in legible condition.

Environmental protection All replacement parts should be properly stored and disposed of in accordance with the applicable environmental protection regulations. Ensure adherence to the pertinent national and international regulations. This especially applies to parts contaminated with toxic substances.
The pumps are in accordance with the requirements of the guidelines 2011/65/EU (ROHS2).

The pumps conform to EU safety requirements and guidelines for Electromagnetic interference 2004/108/EC.

As defined in the Machinery Directive 2006/42/EC, pumps are partly completed machines and not ready-for-use, the overall equipment must be made to fully conform with the requirements of the Directive before being brought into service. Always ensure implementation and enforcement of the basic requirements of the Machinery Directive 2006/42/EC according to Appendix I (General Principles).

The following harmonised standards are met:

NF 600 AA
- EN 55014-1

NF 600 DC / NF 1,600 DC
- EN 55022
- EN 55011

NF 600 DCB
- EN 55014-1
- EN 61000-6-1

Customer services and repairs

All repairs to the pump(s) must be carried out by the relevant KNF Customer Service team.

Only use KNF original parts for all maintenance work.
4. Technical data

Pump materials

The pump type KP stands for:

| Assembly | Material | Material
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump head *</td>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>Valve plate / seals</td>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>Diaphragm</td>
<td>PTFE-coated</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2

1) according to DIN ISO 1629 and 1043.1

The pump type KT stands for:

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump head *</td>
<td>PP</td>
</tr>
<tr>
<td>Valve plate / seals</td>
<td>FFKM</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>PTFE-coated</td>
</tr>
</tbody>
</table>

Tab. 3

1) according to DIN ISO 1629 and 1043.1

The pump type TT stands for:

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump head *</td>
<td>PVDF</td>
</tr>
<tr>
<td>Valve plate / seals</td>
<td>FFKM</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>PTFE-coated</td>
</tr>
</tbody>
</table>

Tab. 4

1) according to DIN ISO 1629 and 1043.1

* Pump head 1 (Fig. 11): comprises a connecting plate and an intermediate plate
* Pump heads 2 – 4 (Fig. 11): comprise a head connection and an intermediate plate

Hydraulic ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate [l/min] 1), 2), 3)</td>
<td>≥ 6.0</td>
</tr>
<tr>
<td>Max. permissible pressure NF 600 [bar g]</td>
<td>1</td>
</tr>
<tr>
<td>Max. permissible pressure NF 1.600 [bar g]</td>
<td>6</td>
</tr>
<tr>
<td>Suction head [mWG]</td>
<td>3</td>
</tr>
</tbody>
</table>

Tab. 5

1) Measured with water at 20°C / at atmospheric pressure
2) Flow rates may vary from the values shown, depending on fluid viscosity, pump head material and the hoses / hose connectors used.
3) Flowrate DC: ≥ 5.5

Hydraulic connections

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF 600 / NF 1.600</td>
<td>G 3/8"</td>
</tr>
<tr>
<td>UNF 600 / UNF 1.600</td>
<td>NPT 3/8"</td>
</tr>
<tr>
<td>Recommended hose size ID [mm]</td>
<td>10</td>
</tr>
</tbody>
</table>

Tab. 6
Specifications NF 600 AA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>230V/50Hz</th>
<th>100V/50-60Hz</th>
<th>115V/60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage</td>
<td>24V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. current at max. load [A]</td>
<td>0.43</td>
<td>1.15/0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Max. motor current [A]</td>
<td>0.55</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Protection class [-]</td>
<td>IP 54</td>
<td>IP 54</td>
<td>IP 54</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

Tab. 7

Specifications NF 600 DC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage</td>
<td>24V</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>34</td>
</tr>
<tr>
<td>Max. current at max. load [A]</td>
<td>1.4</td>
</tr>
<tr>
<td>Max. motor current [A]</td>
<td>1.5</td>
</tr>
<tr>
<td>Protection class [-]</td>
<td>IP 50</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>1500</td>
</tr>
</tbody>
</table>

Tab. 8

Specifications NF 600 DCB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage</td>
<td>24V</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>44</td>
</tr>
<tr>
<td>Max. current at max. load [A]</td>
<td>1.8</td>
</tr>
<tr>
<td>Max. motor current [A]</td>
<td>2</td>
</tr>
<tr>
<td>Protection class [-]</td>
<td>IP 54</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>1500</td>
</tr>
</tbody>
</table>

Tab. 9

Specifications NF 1.600 DC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor voltage</td>
<td>24V</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>75</td>
</tr>
<tr>
<td>Max. current at max. load [A]</td>
<td>3.1</td>
</tr>
<tr>
<td>Max. motor current [A]</td>
<td>4.9</td>
</tr>
<tr>
<td>Protection class [-]</td>
<td>IP 50</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>2500</td>
</tr>
</tbody>
</table>

Tab. 10

1) The weight may differ slightly from the stated value, depending on the version.

Electrostatic sensitive components (ESD)

Various parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible ambient temperature range [°C]</td>
<td>+5 to +40</td>
</tr>
<tr>
<td>Permissible media temperature [°C]</td>
<td>+5 to +80</td>
</tr>
<tr>
<td>Permissible kinematic viscosity of the media [cSt]</td>
<td>≤150</td>
</tr>
</tbody>
</table>

Tab. 11
5. Assembly and function

Assembly

1. Inlet
2. Outlet
3. Connecting plate
4. Motor
5. Leads
6. Head connection
7. Mounting bracket *

* AA version without mounting bracket

Fig. 1: Diaphragm liquid pump NF 600

1. Ring head connection – inlet
2. Ring head connection – outlet
3. Diaphragm chamber
4. Diaphragm
5. Eccentric
6. Connecting rod
7. Drive

Fig. 2: Operating principle

Diaphragm liquid pumps are based on reciprocating displacement pump technology. The eccentric (5) transforms the circular movement of the motor shaft (7) into an oscillating movement of the diaphragms (4) via a connecting rod (6). Working in conjunction with the inlet (1) and outlet (2) valves, the movement of the diaphragms generates the actual pump operation.

The use of 4 diaphragms enables 4 working strokes per revolution. The medium enters the pump via the ring head connection inlet (1) and is delivered to the diaphragm. The medium is then delivered to the pressure side connection via the ring head connection outlet (2).
6. Installation and connection

Only install and operate the pumps under the operating parameters and conditions described in Chapter 4, Technical data.

Observe the safety notes (see chapter 3).

6.1. Installation

- Before installation, store the pump at the installation location to bring it up to ambient temperature.

Mounting dimensions

Mounting dimensions (see Fig. 3 to 6)

Fig. 3: Mounting dimensions NF 600 DC

Fig. 4: Mounting dimensions NF 600 DCB
For pumps with fan: mount the pump so that the fan of the motor can suck in sufficient cooling air.

Make sure that the installation location is dry and the pump is protected against rain, splashes, hose and drip water.

Protect the pump against dust.

Protect the pump against vibrations and jolts.

The pump can be mounted in any orientation. The priming and accuracy of the pump is optimal if installed as in the illustration (Fig. 7).
Decoupling

KNF recommends mechanically decoupling the pump from the pipework system, e.g. by using flexible hoses or pipes. This prevents any oscillations of the pump being transferred to the system.

Touch and foreign object protection

For pumps with alternating current motors:

WARNING

Danger of injury during operation

- Take protective measures against touching parts which are energised (live), such as electrical connections or windings.
- Take protective measures against touching moving parts (e.g. fan).

Danger of damaging the pump during operation

- Take protective measures to ensure that no foreign objects can get into the pump or penetrate the motor (see protection class).
6.2. Electrical connection

For pumps with alternating current motors:

DANGER

- Risk of electric shock, danger of death
 - Pump should only be connected by a specialist.
 - Only connect the pump when the power supply is turned off.

For pumps with direct current motors:

- Pump should only be connected by a specialist.
- Only connect the pump when the power supply is turned off.
- All electrical connection work must adhere to the pertinent guidelines, regulations and technical standards.

Connecting the pump

1. Make sure that the power supply data match the data on the motor type plate. The current consumption can be found on the type plate.
2. Connect the motor cables. Electrical data Chapter 4.

 Always check polarity of cables.

 For DC motors:
 - red motor cable: +
 - black motor cable: -

 In the case of brushless DC motors:
 - incorrect polarity may damage the electronics!

 If using AC motors, the power supply must not deviate more than a maximum of +/- 10 % from the specifications on the type plate.

Additional circuit for brushless DCB motors

In order to ensure that emissions comply with the EN 55014 -1 emission standard, this pump type with a brushless DC motor DCB must be fitted with an additional circuit. The additional circuit must be installed as closely as possible to the motor.

The additional circuit must be installed according to the following wiring diagram and its defined components in order to achieve the required level of attenuation.

C1: Condenser

- \(\geq 2200 \, \mu F / UN = 12 \, V \)
- \(\geq 1000 \, \mu F / UN = 24 \, V \)

![Fig. 8: Additional circuit](image-url)
6.3. Hydraulic connection

Connected components
- Only connect components to the pump that are designed to handle the hydraulic data of the pump (see Chapter 4, Technical data).

Hoses
- Only use hoses that are suitable for the maximum operating pressure of the pump (see Chapter 4).
- Only use hoses that are chemically resistant to the liquids being pumped.

6.3.1. Connecting the pump

Arrows on the pump head indicate the flow direction.

1. Remove the protective caps from the connections.
2. Connect the inlet and outlet lines.

Keep the inlet line as short as possible in order to keep the priming process as brief as possible.

3. If the pump is used to build up pressure, make sure that all transition joints between hose and pump are secure in order to ensure that the hoses cannot come off.
4. Check that the hoses and transition joints are fitted correctly and securely.
5. Check that the system is leak-tight.
7. Operation

- The pumps should only be used under the operating parameters/conditions described in Chapter 4, Technical data.
- Ensure that the pumps are being used correctly (see Section 2.1).
- Improper use of the pumps must be prevented (see Section 2.2).
- Observe the safety notes (see chapter 3).
- Pumps are components intended to be incorporated into another machine. The machine/equipment in which the pumps are installed must be made to fully comply with the pertinent regulations before being put into operation.

CAUTION

Risk of burning
The drive heats up.

- Avoid contact with the drive.
- Avoid contact with flammable materials.

Excessive pressures and its inherent dangers can be prevented by using a bypass system with a pressure relief valve between the pressure and suction side of the pump. Further information is available from your KNF adviser (Telephone number: see first page).

Pump standstill

- If the pump stops running, reduce the pressure in the system until it is at normal atmospheric pressure.

For pumps with thermal switch or electronic overload protection:

WARNING

Risk of physical injury and damage to the pump due to automatic start

If the pump overheats and the thermal switch / electronics stops pump operation, the pumps will restart automatically as soon as they have had time to cool down.

- Take steps to ensure that this cannot produce a hazardous situation.

Switching the pumps on and off

The motor speed of the pump, and thus the flow rate, is adjustable and can also be regulated to some extent.

For more details, see Chapter 4, Technical data.

Duty cycle / impulse operation

KNF pumps are designed for continuous operation.

Short start and stop cycles may adversely affect the service life of the brushed motors.
If the pump is operated with short cycles in your application, please contact a KNF pump specialist for further information (Telephone number: see first page).

Turning the pump on

- In order to guarantee that the pump can start every time it is advisable to reduce the back pressure to an acceptable level. This is also the case if there is a short power cut.

- For more specific information contact the KNF specialist (Telephone number: see first page).

Turning the pump off

- KNF recommends: if pumping aggressive liquids, the pump should be rinsed thoroughly prior to switch off (see Section 8.2.1), as this will help to lengthen the service life of the diaphragm.

- Ensure that the system is subject to normal atmospheric pressure (release the hydraulic pressure).

Flow rate NF 600

![Flow rate NF 600](image)

Fig. 9: Flow rate of the pump NF 600

Flow rate NF 1.600

![Flow rate NF 1.600](image)

Fig. 10: Flow rate of the pump NF 1.600
8. Servicing

8.1. Servicing schedule

<table>
<thead>
<tr>
<th>Component</th>
<th>Servicing interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>Regular inspection for external damage or leaks</td>
</tr>
<tr>
<td>Pump head</td>
<td>Clean if the flow rate decreases, the pump does not work or no vacuum is created (Section 8.2)</td>
</tr>
<tr>
<td>Diaphragm, valve plates and seals</td>
<td>Change as soon as pumping capacity decreases, preferably sooner</td>
</tr>
</tbody>
</table>

Tab. 12

8.2. Cleaning

WARNING

Health hazard due to dangerous substances in the pump!

Depending on the substance transferred, risk of caustic burns or poisoning.

- Wear protective clothing if necessary, e.g. protective gloves.
- Rinse the pump with a neutral liquid and pump empty.

8.2.1. Flushing the pump

- If pumping aggressive media, KNF recommends flushing the pump with air under atmospheric conditions for several minutes prior to switch off (if necessary for safety reasons: use an inert gas). This will extend the service life of the diaphragm.

8.2.2 Cleaning the pump

1. Rinse the pump with a neutral liquid and ensure that the pump is free of any hazardous substances.
2. Pump empty
3. Switch off pump and remove mains plug from the socket.
4. Disconnect hoses from the pump head.
5. Where possible, wipe the components with a soft dry cloth. Do not use cleaning solvents as these may corrode plastic parts.
6. If there is compressed air available, blow off the separate parts.
7. We recommend replacing the diaphragm when the head parts are removed.
Preparation of dismantling

For the part numbering system in the subsequent steps refer to Fig.13.

1. Perform steps defined in Chapter 8.2.1 and 8.2.2.
2. Memorize the position of connecting plate (4) and the orientation of the hose connections. This defines head I.

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wrench for diaphragm, special tool *</td>
</tr>
<tr>
<td>1</td>
<td>T20 Torx screwdriver</td>
</tr>
<tr>
<td>1</td>
<td>Slotted Screwdriver No.2</td>
</tr>
</tbody>
</table>

Tab. 13 * Available with spare parts kit or as accessory, Chapter 10

Pump with mounting bracket (DC and DCB)

1. Remove the 4 screws (1) from the mounting bracket (Fig 11).

Dismantling the pump heads I ➔ II ➔ III ➔ IV

2. Loosen all 16 head screws (1) and 4 connecting screws (2) by 2 revolutions in order to prevent any damage to the outer sealing lips.
3. Now dismantle the head screws (1) and connecting screws (2) from the connecting plate I and remove entire head.
4. Follow the same procedure to dismantle pump heads II, III and IV.
Removing the valves and seals

5. Remove the anchor valves (5) and anchor valve seal (7) from the intermediate plate (6), the connecting plate (4) and head connection (3).

6. Remove the sealing rings (8) from the connecting plate and head connection.

Removing the diaphragm

Starting with diaphragm head I.

7. Rotate motor shaft with screw driver until the diaphragm is at its topmost position (upper dead center). Alignment of slot in the motor shaft has to be in direction of diaphragm. See Fig. 14.

8. Use the wrench (see accessories) to loosen the diaphragm (9). In order not to damage the teeth of the diaphragm, press the wrench properly against the diaphragm and check for a correct fit.

Make sure that no washers (10) fall into the pump housing.

One washer per diaphragm!

9. Follow the same procedure to remove the three remaining diaphragm of head II, III and IV, repeat steps 7 and 8.

We recommend replacing the 4 diaphragms (9).

Cleaning the parts

10. Clean the diaphragm (9), anchor valves (5), anchor valve seals (7), sealing rings (8), head connection (3) and connecting plate (4) with a cloth and then blow off with compressed air.

11. Blow off the intermediate plate (6), connecting plate (4) and head connection (3) with compressed air.

Mounting the diaphragm

Starting with diaphragm head I.

12. Rotate motor shaft with screw driver until the connecting rod is at its topmost position (upper dead center). Alignment of slot in the motor shaft has to be in direction of diaphragm. See Fig. 14.

13. Screw the diaphragm (9) with one washer (10) on the connecting rod, making sure that no washers (10) fall into the pump housing.

14. Tighten the diaphragm using the special tool. In order not to damage the teeth of the diaphragm, press the wrench properly against the diaphragm and check for a correct fit.

Torque 0.8 Nm **

15. Follow the same procedure to mount the three remaining diaphragm of head II, III and IV, repeat steps 12 to 14.
Mounting the valves and seals

16. Insert the anchor valves (5) and anchor valve seals (7) in the corresponding recesses of the intermediate plate (6), the head connection (3) and connecting plate (4).

17. Insert sealing rings (8) in the head connection (3) and connecting plate (4).

Mounting the pump heads I ➔ IV ➔ III ➔ II

Starting with pump head I, mount anti-clockwise in order to prevent any damage to the outer sealing lips.

18. Rotate motor shaft with screw driver until the diaphragm is at its topmost position (upper dead center). Alignment of slot in the motor shaft has to be in direction of diaphragm. See Fig. 14.

CAUTION: In order to ensure a leak-proof pump the diaphragm has to be properly centered in the pump housing, Fig.15. If necessary adjust motor shaft slightly with screw driver until the diaphragm is centered.

19. Insert the intermediate plate (6).

CAUTION: Make sure that the orientation is correct so that the connections point in the right direction.

A pin and hole system prevents incorrect assembly. See Fig. 16.

20. Mount the connecting plate (4) on the intermediate plate (6), alternately tighten the four head screws (1) with torque 2.5 Nm**.
21. Follow the same procedure to mount pump heads IV, III, II, repeat steps 18 to 20.

CAUTION: When mounting head connection II, the two marked head screws (1) of pump head I (see Fig. 17) must be loosened by 2 revolutions to prevent any damage to the sealing lips.

22. Tighten the two loosened head screws (1) of head I with torque 2.5 Nm**.

23. Mount the connecting screws (2) with torque 1.2 Nm **.

Mounting the mounting bracket (DC and DCB)

24. Tighten the mounting bracket with torque 2.5 Nm**.

Caution: Settling, fluctuations in temperature, transport, etc. may all cause variations in the breakaway torque.

8.3. Replacing diaphragm, valves and seals

Same procedure as in section 8.2, "Cleaning" – with the exception of step 8: instead of cleaning the diaphragm (9), anchor valves (5), anchor valve seals (7) and sealing rings (8), these components must be replaced.
9. Troubleshooting

For pumps with alternating current motors:

Risk of electric shock, danger of death

DANGER

➔ Before working on the pump disconnect the pump from the power supply.

➔ Ensure that the pump is de-energised.

Pump does not work

<table>
<thead>
<tr>
<th>Cause</th>
<th>Fault remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump not connected to mains power supply.</td>
<td>➔ Connect pump to mains supply.</td>
</tr>
<tr>
<td>Power supply is not switched on.</td>
<td>➔ Switch on power supply.</td>
</tr>
<tr>
<td>Thermal switch or pump electronics have responded.</td>
<td>➔ Disconnect pump from mains power supply. ➔ Allow pump to cool. ➔ Identify and eliminate cause of overheating/overload.</td>
</tr>
<tr>
<td>Connections or pipes are blocked.</td>
<td>➔ Check pipes and connections. ➔ Remove blockage.</td>
</tr>
<tr>
<td>External valve is closed or filter is blocked.</td>
<td>➔ Check external valves and filters.</td>
</tr>
<tr>
<td>Diaphragm, anchor valves or seals are worn out.</td>
<td>➔ Replace diaphragm, anchor valves and seals (see Section 8.3).</td>
</tr>
</tbody>
</table>

Tab. 14

Pump is not priming

<table>
<thead>
<tr>
<th>Cause</th>
<th>Fault remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction side of pump not connected.</td>
<td>➔ Connect the suction side of the pump.</td>
</tr>
<tr>
<td>Liquid in the container is too low.</td>
<td>➔ Fill container.</td>
</tr>
<tr>
<td>Hose connections are not leak-tight.</td>
<td>➔ Secure transition joints between hose and connections with clamps or clamping elements.</td>
</tr>
<tr>
<td>System valve is closed or filter is blocked.</td>
<td>➔ Open the valve. ➔ Clean filter.</td>
</tr>
<tr>
<td>Pump head is filled with gas. The system is unable to handle the pressure on the pressure side.</td>
<td>➔ Reduce pressure on pressure side.</td>
</tr>
<tr>
<td>Particles in the pump.</td>
<td>➔ Clean the pump head (see Section 8.2).</td>
</tr>
<tr>
<td>The head parts are not media-resistant.</td>
<td>➔ Replace the pump head with a compatible version.</td>
</tr>
<tr>
<td>Incorrect interchange of outlet and inlet line connections.</td>
<td>➔ Remove outlet and inlet lines and re-connect correctly.</td>
</tr>
</tbody>
</table>

Tab. 15
Flow rate, suction head or pressure head is too low
The pump does not achieve the technical performance data stated on the data sheet.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Fault remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components in the system connected to the suction and pressure sides, such as hoses, valves or filters, are causing too much resistance.</td>
<td>➔ Modify installation, check the cross-section of components.</td>
</tr>
<tr>
<td>Hose connections are not leak-tight.</td>
<td>➔ Secure transition joints between hose and hose connections with clamps or clamping elements</td>
</tr>
<tr>
<td>Particles in the pump.</td>
<td>➔ Clean the pump head; install suction-side filter if required.</td>
</tr>
<tr>
<td>Viscosity of the liquid is too high.</td>
<td>➔ Contact KNF.</td>
</tr>
<tr>
<td>Incorrect interchange of outlet and inlet line connections.</td>
<td>➔ Remove outlet and inlet lines and re-connect correctly.</td>
</tr>
<tr>
<td>The head parts are not media-resistant.</td>
<td>➔ Replace the pump head with a compatible version.</td>
</tr>
</tbody>
</table>

Tab.16

Fault cannot be rectified
If you are unable to identify any of the above causes, please send the pump to KNF customer services (see address on last page).

1. **Flush the pump** to clear the pump head of any hazardous or aggressive fluids (see Section 8.2.1).
2. **Dismantle the pump.**
3. **Clean the pump** (see Section 8.2.2).
4. **Send the pump**, with completed decontamination statement (see Chapter 11), to KNF customer services stating the nature of the pumped medium.
10. **Spare parts and accessories**

Spare parts kit

<table>
<thead>
<tr>
<th>Spare parts kit</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spare parts kit NF 600 / NF 1.600 KP</td>
<td>157803</td>
</tr>
<tr>
<td>Spare parts kit NF 600 KT / TT</td>
<td>157804</td>
</tr>
<tr>
<td>Spare parts kit NF 1.600 KT / TT</td>
<td>157805</td>
</tr>
</tbody>
</table>

Tab. 17

Accessories

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrench for diaphragm*</td>
<td>157776</td>
</tr>
</tbody>
</table>

Tab. 18

Wrench for diaphragm is included in spare parts kit
11. Decontamination declaration

KNF shall only undertake to repair the pump on condition that the customer provides certification of the transferred media and the cleaning of the pump (decontamination declaration).

Therefore please fill in the document “decontamination declaration” which has been delivered or download it directly from the website www.knf.com/downloads.

Enter the pump model, the Serial No. and the transferred media in the form below and sent the signed form together with the flushed and cleaned pump to your local KNF sales partner (see address on last page).

Customer decontamination declaration for repair order

We confirm that the only media that the model specified has pumped are those named and that the pump has been flushed and cleaned.

<table>
<thead>
<tr>
<th>Pump model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No.</td>
<td></td>
</tr>
<tr>
<td>Pumped media</td>
<td></td>
</tr>
</tbody>
</table>

The pump does not contain aggressive, biological, radioactive, poisonous, or other dangerous media.

Company ___________________________ Date/Signature ___________________________